Nitrosyl Hexafluoroplatinate(V), NO⁺[PtF₆]⁻: Preparation and Magnetic Susceptibility. The Magnetic Susceptibility of O_2^+

By NEIL BARTLETT and S. P. BEATON

(The Department of Chemistry, The University of British Columbia, Vancouver 8, B.C., Canada)

ALTHOUGH the magnetic susceptibility of dioxygenyl hexafluoroplatinate(v) has been measured¹ over the temperature range 77–298° κ and has been shown¹ to be consistent with the combination of a paramagnetic (nitric oxide-like) O₂⁺ and a paramagnetic [PtF₆]⁻ species, the susceptibility of neither of these ions has been separately determined hitherto. On the basis of its anticipated structural similarity to O₂⁺[PtF₆]⁻ the nitrosyl salt, NO⁺[PtF₆]⁻, appeared to be the most suitable for this purpose.

Nitric oxide is readily oxidized by platinum hexafluoride but it has not proved possible to control the reaction to produce a pure product. A mixture of NOPtF₆ and (NO)₂PtF₆ is always produced.² Platinum hexafluoride is, however, able to oxidize nitrosyl fluoride with the elimination of fluorine*: ONF + PtF₆ \rightarrow ON+[PtF₆]⁻ + $\frac{1}{2}$ F₂. In a typical experiment, platinum hexafluoride (5·20 mmoles), prepared by Weinstock, Malm, and Weaver's method,³ was warmed to room temperature, in a closed nickel vessel, with data being, for the cubic form: a_0 , 10·118 \pm 0·003 Å; U_{calc} , 1036 Å³; Z, 8; space group probably Ia3 (T_h^7 , No. 206).⁴

The infrared spectrum, in the range 800— 400 cm.⁻¹, of a thin film of the salt, formed on the silver chloride windows of a nickel cell, shows a very strong absorption centred on 632 cm.⁻¹, assumed to be the pseudo- v_3 of "octahedral" [PtF₆]⁻. The spectrum is very similar to that of dioxygenyl hexafluoroplatinate(v),^{1,5} but different from that of [PtF₆]²⁻ salts which show⁶ their strongest absorption at 583 cm.⁻¹

The magnetic susceptibility of NO+[PtF₆]-(cub.) has been measured over the temperature range 77—303° κ . As in the case of the dioxygenyl salt,¹ the susceptibility obeys the Curie–Weiss law (θ being: NOPtF₆, 32; O₂PtF₆, 45°). This simple behaviour shows that there are no strong interactions of the molecular magnets and in view of the isomorphism and near isodimensionality of the two salts, the susceptibility of the [PtF₆]⁻ ion has been taken to be the same in both. The molar

I	ΓA	в	L	E
		~	-	-

Temp. (°ĸ)	$10^{6}\chi_{M}O_{2}^{+}[PtF_{6}]^{-}$	10 ⁶ м[PtF ₆]-	$\chi_{_{\mathbf{M}}}(\mathcal{O}_{2}^{+})$	$\mu_{\rm eff}({\rm O_3^+})$	$\mu(NO)(8)$
80	6490	3590	2900	1.36	_
100	5500	2900	2600	1.42	
140	4150	2160	1990	1.50	1.64
180	3400	1740	1660	1.55	1.71
220	2860	1470	1390	1.57	1.77
260	2490	1290	1200	1.58	1.82
300	2170	1140	1030	1.57	1.86

Molar susceptibility data (in c.g.s. units) for $O_2^+[PtF_6]^-$, $NO^+[PtF_6]^-$ and O_2^+

 χ_{μ} -Values from plots of χ_{μ} against T^ok

an excess of nitrosyl fluoride (8.46 mmoles). The mildly exothermic reaction produced fluorine (2.67 mmoles) which was identified by, (1) its vapour pressure at -196° , (2) absence of infrared absorption, and (3) its complete reaction with liquid mercury. The mustard yellow solid product was characterized by (1) analysis, (2) X-ray powder-photography, (3) infrared spectroscopy, and (4) magnetic-susceptibility measurement, as nitrosyl hexafluoroplatinate(v). The salt is isomorphous with its dioxygenyl analogue and with the other third-transition-series salts, the crystal susceptibility of the $[PtF_6]^-$ ion was evaluated by making a diamagnetic correction of 10×10^{-6} c.g.s. units for the NO⁺ ion. The susceptibility of the O₂⁺ ion was obtained by difference from the O₂⁺[PtF₆]⁻ data. The results are given in the Table. The results quoted for O₂⁺[PtF₆]⁻ are new values obtained from a sample prepared by the reaction O₂ + PtF₆ \rightarrow O₂PtF₆. They are similar to the data given previously.^{1b}

As anticipated^{1,7} for the "non-bonding" valence electron configuration $d_{t(2g)}^5$, in an octahedral field, the (temperature-independent) magnetic

* Some ONF₃ has been detected in the gaseous product, by infrared spectroscopy.

in O_2^+ .

moment of the $[PtF_6]^-$ ion, $\mu'_{eff} = 1.74$ B.M., is very close to the spin-only value, for one unpaired electron, of 1.73 B.M. The susceptibility derived for the O_2^+ ion is smaller than that of NO at the same temperature, but the marked diminution in moment with reduction in temperature is similar

Since the formula-unit volume of $NO^+[PtF_6]^ (U/Z = 129.5 \text{Å}^3)$ is $\sim 3 \text{Å}^3$ greater than for $O_2^+[PtF_6]^-$ (U/Z = 126.3Å³) and since the interionic forces must be similar for the two cases, it is probable that the $NO^+(c)$ is $\sim 3\dot{A}^3$ larger than O_{2(C)}. Evidently the greater total nuclear charge of the O₂+ outweighs the effect of the antibonding π -electron, which is usually visualized as adding to the effective size of such a species. A similar effect is seen in a comparison of the molecular volume of solid fluorine⁹ (β -form 37.1Å³) with its solid oxygen isomorph (γ -form 39.8Å³).

(Received, February 21st, 1966; Com. 101.)

¹ (a) N. Bartlett and D. H. Lohmann, Proc. Chem. Soc., 1962, 115; (b) J. Chem. Soc., 1962, 5253.

to the behaviour of NO.⁸ Like the latter, the O₂+

ion is therefore assigned a ${}^{2}\Pi$ ground state, the

reduced moment at lower temperatures being due

to spin-orbit coupling. A greater splitting of the

 $J = \frac{3}{2}, \frac{1}{2}$ levels in ${}^{2}\Pi$ O₂⁺ compared with ${}^{2}\Pi$ NO

would account for the lower value of the moment

^(a) N. Bartlett, S. P. Beaton, and N. K. Jha, *Chem. Comm.*, 1962, 1862, 1862, 1862, 9253.
³ N. Bartlett, S. P. Beaton, and N. K. Jha, *Chem. Comm.*, 1966, 168.
³ B. Weinstock, J. G. Malm, and E. E. Weaver, J. Amer. Chem. Soc., 1961, 83, 4310.
⁴ "International Tables for X-Ray Crystallography," Vol. I, Kynoch Press, Birmingham, 1952.
⁵ N. Bartlett and N. K. Jha, "Noble Gas Compounds," H. H. Hyman ed., The University of Chicago Press, Chicago and London, 1963, p. 23.

⁶ R. D. Peacock and D. W. A. Sharp, J. Chem. Soc., 1959, 2762.

 ⁷ A. Earnshaw, B. N. Figgis, J. Lewis, and R. S. Nyholm, *Nature*, 1957, 179, 1121.
 ⁸ S. S. Bhatnagar and K. N. Mathur, "Physical Principles and Applications of Magnetochemistry," Macmillan, London, 1935, p. 174.

⁹ T. H. Jordan, W. E. Streib, H. W. Smith, and W. N. Lipscomb, Acta Cryst., 1964, 17, 777.